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A B S T R A C T

Wireless sensor node coverage optimization is a critical issue in wireless sensor networks (WSN), which
is a commonly typical NP-hard problem. To enhance the coverage of wireless sensor networks, coverage
optimization refers to the prudent placement of resource-constrained wireless sensor nodes. Current coverage
optimization techniques frequently result in local optimums and have poor optimization performance. Based on
the excellent optimization performance of artificial bee colony (ABC) algorithm, this paper presents a novel self-
adaptive multi-strategy artificial bee colony (SaMABC) algorithm, which designs an appropriate strategy pool
and a fine-grained adaptive selection mechanism according to the coverage optimization problem. Furthermore,
the algorithm is improved through using simulated annealing approach and the dynamic search step to enhance
its ability to jump out of the local optimum. Compared with the state-of-the-art optimization algorithms, the
evaluation results carried out in several scenarios show that SaMABC obtains the best performance in terms
of coverage optimization. Specifically, the coverage of wireless sensor networks in SaMABC achieves around
99.1% and outperforms the initial coverage by up to 14.1%.
1. Introduction

Wireless sensor network (WSN) is a new computing and network
model, which can be defined as a network composed of tiny, expensive
and highly intelligent devices known sensor nodes [1,2]. WSN is a
network structure made of several sensor nodes via wireless commu-
nication technology. The detection and monitoring of its main target
areas have been widely used in industry, such as urban monitoring [3],
environmental detection [4], military monitoring [5], mobile target
tracking [6] and smart home [7]. However, sensor nodes have some
limitations, such as high network cost and weak sensing range. To
enhance WSN coverage, sensor node redundancy should be avoided
while deploying sensor nodes.

A crucial issue in WSNs is the optimization of sensor node coverage,
and the coverage has a substantial influence on the performance of
the network [8]. Coverage Optimization aims to improve the network
area that can be monitored with just a minimal number of sensors
while reducing the amount of blind spots. Typically, sensor nodes are
dispersed at random throughout the region that has to be detected.
However, the high node density and redundancy caused by this random
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deployment technique result in low overall coverage, which further
degrades the effectiveness of WSN monitoring. Therefore, it is essential
to develop a practical sensor node deployment strategy that can not
only increase the WSN’s energy efficiency and service quality, but also
achieve the load balancing of transmission inside the WSN [9–12].

The optimization of sensor node coverage is, in fact, a typical
NP-hard problem because of the influence of network resources and
coverage characteristics. Therefore, it is difficult to solve the problem
using classical mathematical optimization techniques such as gradient
descent method. In recent years, coverage problem of WSN has been
studied by a large number of researchers, with the genetic algorithm
(GA) [13], particle swarm optimization algorithm (PSO) [14], artificial
bee colony algorithm (ABC) [15], and simulated annealing algorithm
(SA) [16] being the most popular approaches. This type of optimization
procedure is highly adaptable and has few restrictions for the problem’s
mathematical characteristics [17].

Even though some of the aforementioned heuristic algorithms have
been successful at optimizing WSN coverage, in reality, all of them aim
for an approximative optimal solution rather than the best possible one.
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Table 1
Comparison among different state-of-the-art techniques.

Category Method Description

Model Binary sensing model [18] The most typical, simple and ideal sensing model
optimization Probability sensing model [19] A sophisticated model based on environmental awareness

NP-complete [20] Using polynomial calculation and NP-complete mathematical method to solve
Improved GND-DE [21] Adopt DE algorithm to solve the dynamic deployment of sensor nodes
optimization IWHO [22] Whale optimization-based dynamic deployment algorithm
algorithms SA&GD [23] Hybrid optimization mechanism combining SA and GD

YYPIO [24] Hybrid optimization mechanism combining YYPO and PIO

GABC [25] Guided by global optimal solution
GBABC [26] An improved ABC algorithm for gaussian bare bones

Improved ECABC [27] Optimization based on elite group guidance
ABC ABCVSS [28] Multi-strategy guidance of variable search mechanism
algorithms NABC [29] Guided based on best neighbor and global neighborhood search

ABC-MNT [17] Guided optimization based on multi-neighborhood topology
FLABC [30] Online fitness landscape based on optimization problems
These algorithms’ search techniques are also overly greedy. It is chal-
lenging to arrive at a solution of greater quality while the iteration is in
the middle and late phases since it is so simple to settle on the problem’s
local optimal solution. Because of this, this work suggests an adaptive
multi-strategy ABC algorithm, called SaMABC, from the standpoint of
how to leave the local optimum, improve population diversity, and
quicken algorithm convergence. For the coverage optimization prob-
lem, we design an appropriate strategic pool and fine-grained adaptive
selection mechanism. Simultaneously, since the optimization process is
prone to falling into a local optimum, SaMABC guide the algorithm
in jumping out of the local optimum through simulated annealing and
dynamic search steps, resulting in a higher quality solution.

The main contributions of this paper are as follows:

• We model and analyze the coverage optimization problem in
WSNs, and then transform it into a solvable objective function.
We solve the transformed objective function with a meta-heuristic
algorithm and iterate continuously to get the best solution.

• We propose a novel self-adaptive multi-strategy artificial bee
colony (SaMABC) algorithm, which select multiple suitable search
strategies based on the characteristics of the problem to establish
a multi-strategy pool.

• By combining the concept of simulated annealing, altering the dy-
namic search step length and the variable threshold limit, SaMABC
enhances the algorithm’s global search ability, making it possible
to jump out of the local optimum and reach a higher quality
solution.

• We simulate SaMABC in five wireless sensor network scenarios
and analyze the results. According to the simulation results, SaM-
ABC can successfully decrease sensor node redundancy, boost
coverage by around 14.1%, and improve the coverage of WSN
nodes.

The structure of this paper is as follows. In Section 2, we intro-
uce the related work. In Section 3, we describe WSN node coverage
ptimization problem and artificial bee colony algorithm, as well as
he main motivation of this paper. In Section 4, we present SaMABC
lgorithm, and describe the multi-strategy mechanism and algorithm
ramework in detail, including the algorithm framework and multi-
trategy mechanism. In Section 5, we show the performance evaluation
nd analysis, including the analysis of relevant comparison results. The
ork of this study is reviewed in Section 6.

. Related work

Coverage optimization is always the most challenging application
roblem in WSNs. Many related research work have been proposed
n recent years to enhance WSN coverage. It can be roughly divided
nto three categories: (1) Optimization of WSN coverage model, (2)
olve with improved optimization algorithms, and (3) Solutions with
2

improved ABC algorithms. Table 1 is the summary of technological
achievements of related work.

(1) Optimization of WSN coverage model
In WSNs, each sensor node has the ability to sense and monitor

the area to be monitored. The monitoring capability of a node is
closely related to its physical attributes and coverage model. A more
precise coverage model can increase sensor node sensing quality and
monitoring capabilities. Sensor nodes in the binary sensing model [18]
only detect the points to be monitored within the sensing range.
However, the binary sensing model does not consider some uncertain
factors and is considered to be the simplest coverage model. With
increasing distance, the sensing ability of sensor nodes declines. A
more realistic probabilistic sensing model is proposed. Elfes sensing
model [19] effectively reduces the uncertainty of sensor node sense
by introducing the fluctuation value of sensing radius. In addition,
considering various factors affecting sense, more precise probabilistic
sensing models have been proposed [31,32].

(2) Solutions with improved optimization algorithms
The random deployment mechanism can lead to the problem of

sensor node redundancy and low coverage. To increase coverage of
the monitoring region and minimize monitoring blind spots, optimiza-
tion techniques may be utilized to choose the best place for node
deployment.

Cardei et al. [20] proposed to solve this problem by polynomial
calculation and NP-complete mathematical method. However, it is
difficult to find a better deployment mechanism by using traditional
mathematical methods. Many scholars have proposed meta-heuristic
algorithms to obtain an approximate ideal solution of this problem.
Wang et al. [21] proposed an improved Differential evolution (GND-
DE) based on population topology to solve the dynamic deployment
problem of sensor nodes. Zeng et al. [22] proposed an improved Wild
Horse Optimization Algorithm (IWHO) to solve coverage optimization
problems by combining multiple optimization techniques.

Many hybrid optimization algorithms have been proposed in at-
tempt to combine the benefits of distinguishable optimization algo-
rithms. El Khamlichi et al. [23] proposed a hybrid deployment opti-
mization mechanism combining simulated annealing and gradient algo-
rithm to ensure high coverage under WSNs with a minimum number of
sensor nodes. Simulated annealing algorithm can effectively maximize
the coverage area of WSNs and the life of network devices. Simi-
larly, Yin et al. [24] proposed a Yin–Yang pigeon-inspired optimization
algorithm (Yin–YangPIO) that combines Yin-Yang-air optimization al-
gorithm (YYPO) with pigeon-inspired optimization algorithm (PIO) to
improve the optimal solution and assist node deployment to the optimal
location.

(3) Solutions with improved ABC algorithms
Furthermore, many improved ABC algorithms have excellent op-

timization benefits on WSN coverage optimization. Some algorithms
often use global optimal solution and the elite solution to guide algo-
rithm optimization. Zhu et al. [25] proposed an improved algorithm
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GABC based on the population’s optimal individual guidance, including
the Gbest term of the population optimal individual in the solution
search equation and changing the search direction using Gbest’s helpful
information. However, the search direction of the new Gbest item is
easily opposite to that of the random item, leading in oscillation of the
overall direction and a reduction in the algorithm’s search efficiency.
As a result, Zhou et al. [26] proposed GBABC, an improved algorithm
for Gaussian reduction that differs from GABC’s direct addition of Gbest
items. GBABC use Gaussian distribution to generate descendants in the
search area defined by Gbest and the current individual, thus avoiding
the phenomena of shock. Based on the concept of the elite, Kong
et al. [27] proposed the improved algorithm ECABC directed by the
elite group, which takes the center point of the elite group as the search
starting point for solution search equation, so avoiding the precocious
problem to some extent. However, because the elite group is built only
on fitness, ECABC remains excessively greedy.

Others use adaptive search and global neighborhood search to opti-
mize the problem depending on previous experience. Kiran et al. [28]
proposed an enhanced variable search strategy algorithm ABCVSS,
selected five various search equations to build a strategy candidate
pool, and designed an adaptive strategy selection mechanism. In this
mechanism, a counter is set for each strategy to record the number
of nectar source that have been successfully updated, allowing the
chance of each strategy being selected to be calculated. Peng et al. [29]
proposed a modified neighborhood search algorithm NABC, which
leverages the neighborhood search mechanism to conduct fine-grained
searches in the neighborhood of the abandoned nectar source to en-
hance the probability of discovering the global optimal solution. Zhou
et al. [17] presented an improved multi-neighborhood topology-based
algorithm ABC-MNT. It may implement diverse capacities of spreading
search information by taking into consideration the characteristics of
different neighborhood topologies, which is favorable to better bal-
ancing exploration and development. Furthermore, Zhou et al. [30]
proposed an improved algorithm FLABC based on fitness landscape by
considering the structural characteristics of optimization problems.

However, while they have significantly improved WSN coverage,
they are not the greatest solution. These algorithms are prone to
falling into the problem’s local optimization and converge prematurely
in the optimization process, leading to a low accuracy of the final
optimization results. The above work has cons and pros, prompting us
to explore whether we can combine these advantages to create a new
algorithm to satisfy the demands of high accuracy and fast convergence
in solving coverage optimization problems.

3. Background and motivation

3.1. Background

3.1.1. Coverage of wireless sensor networks
Coverage is a basic problem that must be solved in the configuration

of WSNs [33,34]. It depicts the variety of areas that WSNs can detect
and monitor. The coverage optimization problem usually has some
shortcomings, such as weak sensing range of sensor nodes, short work-
ing life, too dense node deployment, and many blind spots. Its common
practical applications include area coverage and target coverage. Fig. 1
shows a simple area coverage diagram, where the square represents
the detection area and the circle represents the sensing range of nodes.
In brief, coverage optimization is the process of creating a superior
deployment strategy. It deploys a limited number of sensor nodes to
the area to be detected, which maximizes the area that can be detected
by sensor nodes, that is, the coverage of the detection area.

In Fig. 1, the area within the square is the area to be covered,
marked with blue shading. The goal of coverage optimization is to
deploy these sensor nodes to maximize the coverage of this area and
cover the blue shadow as much as possible. The blue shadow in Fig. 1
represents the coverage blind spots in WSN. Therefore, the goal of
3

Fig. 1. Schematic diagram of WSN node coverage.

Fig. 2. Schematic diagram of binary sensing model.

coverage optimization is to spread out sensor nodes as far as possible
to cover the full detecting region while reducing coverage blind spots.

Model building. The sensing model of sensor node is closely related
to WSN coverage, which is the key to solve the problem of WSN cov-
erage. The geometric relationship between sensor node and coverage
area is determined by the calculation results of the sensing model. A
precise sensing model can really simulate the actual working scene. The
binary sensing model and the probability sensing model are the two
fundamental sensor node awareness models used in the current study.

(1) Binary sensing model.
The binary sensing model is the most typical, simple and ideal

sensing model in the current WSN coverage model [18]. This model
refers to the circular monitoring area of sensor node S on a two-
dimensional plane, with sensing radius r as the circular radius and
sensor node S as the center. Fig. 2 illustrates two-dimensional plane
diagram of the binary sensing model.

In Fig. 2, n1 and n2 are two random points in the plane region.
Among them, n1 is within the monitoring area of this sensor, and the
sensing probability is recorded as 1. While n2 exceeds the monitoring
area of sensor S, the sensing probability of sensor S to point n2 is 0. For
any given point 𝑄(𝑥, 𝑦) of the two-dimensional plane, the mathematical
equation of the Binary Sensing Model is as follows:

𝑃𝑆,𝑄 =

{

1, 𝑑(𝑆,𝑄) ≤ 𝑟
0, 𝑑(𝑆,𝑄) > 𝑟

(1)

where, 𝑃𝑆,𝑄 is the probability that sensor node S can detect monitoring
point Q, 𝑟 is the sensing radius of sensor node S. And 𝑑(𝑆,𝑄) is
the Euclidean distance of monitoring point Q to sensor node S. The
calculation method is as follows:

𝑑(𝑆,𝑄) =
√

(𝑆 −𝑄 )2 + (𝑆 −𝑄 )2 (2)
𝑥 𝑥 𝑦 𝑦
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Fig. 3. Schematic diagram of probability sensing model.

where, 𝑆𝑥, 𝑆𝑦 and 𝑄𝑥, 𝑄𝑦 represents the horizontal and vertical coordi-
nates of sensor node S and monitoring point Q in the two-dimensional
plane respectively. The Binary Sensing Model can simplify the coverage
problem and facilitate further research on the problem. As a result,
this model was typically utilized in the early studies on the coverage
issue in sensor networks. However, the binary sensing model does not
account for environmental factors and so cannot accurately simulate
actual application scenarios.

(2) Probability sensing model.
In practical application scenarios, the detecting range of sensor

nodes is impacted by various unique environmental conditions. How-
ever, binary sensing model is too idealistic and does not consider the
impact of these environmental factors. The results of experimental
simulation are quite different from the actual results. Therefore, some
scholars have modified the Binary Sensing Model. By combining the
influence of environmental factors on sensors, a more realistic proba-
bility sensing model [19] is proposed. The model introduces the radius
fluctuation value 𝑟𝑒. It is believed that the sensing range of sensor
nodes can fluctuate with environmental factors. And its sensing proba-
bility can decline in a negative exponential trend with the increase of
Euclidean distance between monitoring points and sensor nodes. The
calculation equation of sensing probability of probability sensing model
is as follows:

𝑃𝑆,𝑄 =

⎧

⎪

⎨

⎪

⎩

1, 𝑑(𝑆,𝑄) ≤ 𝑟 − 𝑟𝑒
𝑒(−𝛼1𝜆

𝛽2
1 ∕𝜆𝛽22 +𝛼2), 𝑟 − 𝑟𝑒 < 𝑑(𝑆,𝑄) < 𝑟 + 𝑟𝑒

0, 𝑑(𝑆,𝑄) ≥ 𝑟 + 𝑟𝑒

(3)

where, 𝑟𝑒 is the radius fluctuation value of the sensor node’s uncertain
detection capability, 𝜆1 = 𝑟𝑒 − 𝑟 + 𝑑(𝑆,𝑄), 𝜆2 = 𝑟𝑒 + 𝑟 − 𝑑(𝑆,𝑄), 𝛼1, 𝛼2,
𝛽1, 𝛽2 is the attenuation coefficient of the sensing probability, and is a
fixed physical attribute of the sensor equipment. Fig. 3 illustrates the
two-dimensional plane diagram of probability sensing model.

Fig. 3 shows that when a random point n1 in the monitoring area
is located within the range 𝑟 − 𝑟𝑒 from sensor node S, the probability
that this monitoring point n1 can be monitored by sensor node S
is 1. Therefore, the red area in the figure is the area that must be
monitored by sensor node S. On the contrary, if the monitoring point
is outside the range of 𝑟 + 𝑟𝑒, the probability of being monitored is 0.
In addition, in the area between 𝑟 − 𝑟𝑒 and 𝑟 + 𝑟𝑒, the probability of
being monitored could decrease with the distance from sensor node
S. In conclusion, the probability sensing model is more accurate for
simulating and evaluating genuine industrial scenarios when integrated
with the ambient aspects of sensor nodes.

Objective function construction. We choose the probability sens-
ing model to calculate sensor node sensing probability in WSN and
design an objective function to resolve WSN coverage in order to
4

make the experimental results more accurate. Assume that D sensor
nodes should be implemented in the monitoring region A with the
size of 𝑀 × 𝑁 . These sensor nodes have the same physical attributes,
including the sensing radius 𝑟 and the radius fluctuation value 𝑟𝑒.
For the convenience of experimental calculation, all sensor nodes are
regarded as particles whose volume and mass can be ignored. At the
same time, the WSN monitoring area is simplified as a discrete two-
dimensional plane area. It deploys the sensor node in the area A to be
monitored, and 𝑀 × 𝑁 points are monitored. Therefore, an objective
function can be constructed to calculate the coverage of area A to be
monitored, and its function expression is as follows:

𝐶𝑅𝐴 =
|𝑈𝑖

𝐷𝑃 {𝑖}|
𝑀 ×𝑁

(4)

where, 𝐶𝑅𝐴 represents the coverage of monitoring area A, and 𝑃 {𝑖} is
the set of sensing probabilities of the points covered by sensor node 𝑖,
|𝑈𝑖

𝐷𝑃 {𝑖}| indicates all points monitored by sensor nodes.

3.1.2. Artificial bee colony algorithm
Among various optimization algorithms, the artificial bee colony al-

gorithm is a relatively innovative and effective optimization algorithm.
Initially, ABC randomly generates nectar sources using Eq. (5):

𝑥𝑖,𝑗 = 𝑥𝑚𝑖𝑛𝑗 + 𝑟𝑎𝑛𝑑(0, 1) ⋅ (𝑥𝑚𝑎𝑥𝑗 − 𝑥𝑚𝑖𝑛𝑗 ) (5)

where, 𝑥𝑖,𝑗 ∈ [𝑥𝑚𝑖𝑛𝑗 , 𝑥𝑚𝑎𝑥𝑗 ], 𝑥𝑚𝑖𝑛𝑗 , 𝑥𝑚𝑎𝑥𝑗 respectively represents the 𝑗th
dimension boundary of the optimization problem, and 𝑟𝑎𝑛𝑑(0, 1) is a
uniform random number within the range of [0, 1]. The ABC opti-
mization algorithm is divided into three phases: employed bee phase,
onlooker bee phase and scout bee phase. The three phases are explained
below.

Employed bee phase. The employed bees can explore for new
nectar sources throughout the search space of optimization problem.
Simultaneously, the position of the nectar source is updated by the
search equation shown in Eq. (6).

𝑣𝑖,𝑗 = 𝑥𝑖,𝑗 + 𝜙𝑖,𝑗 ⋅ (𝑥𝑖,𝑗 − 𝑥𝑘,𝑗 ) (6)

where, 𝑉𝑖 is a new source of nectar, 𝑋𝑖 is the original nectar source,
𝜙𝑖,𝑗 ∈ [−1, 1] is uniform random number, 𝑋𝑘 is the nectar source
randomly selected from the population, and 𝑋𝑘 ≠ 𝑋𝑖. Note that 𝑗 is
an arbitrarily selected dimension, and 𝑋𝑖 and 𝑉𝑖 is different only in
this dimension. If 𝑉𝑖 has more nectar than 𝑋𝑖, then 𝑉𝑖 will replace 𝑋𝑖
to enter the next iteration. Otherwise, 𝑋𝑖 remains unchanged.

Onlooker bee phase. Onlooker bees will choose great nectar
sources for exploitation based on the nectar quantity of the nectar
source after obtaining the nectar source information shared by em-
ployed bees. It also searches for new nectar sources through using
solution search equation shown in Eq. (6). The amount of nectar of
the nectar source is the fitness value of the individual, which can be
calculated according to the following Eq. (7):

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 =

{ 1
1+𝑓 (𝑋𝑖)

, 𝑓 (𝑋𝑖) ≥ 0

1 + |𝑓 (𝑋𝑖)|, 𝑓 (𝑋𝑖) < 0
(7)

where, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 is the fitness value of the nectar source, 𝑓 (⋅) is the
objective function value. If the nectar amount of the nectar source
is more, the probability of the nectar source being selected by the
onlooker bees is higher. The selection probability can be calculated
according to the following Eq. (8):

𝑝𝑖 =
𝑓 (𝑋𝑖)

∑𝑆𝑁
𝑗=1 𝑓 (𝑋𝑖)

(8)

where, the selection probability of 𝑝𝑖 as nectar source 𝑋𝑖. After obtain-
ing the selection probability of all nectar sources, the onlooker bees will
use the roulette mechanism to select.

Scout bee phase. When the nectar source associated with the
employed bees is not updated after a set threshold 𝑙𝑖𝑚𝑖𝑡, we think that
the nectar source has been depleted. In this case, a new nectar source
is randomly initialized through Eq. (5) to replace 𝑋 .
𝑖
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Fig. 4. Distribution of feasible solutions in optimization functions.

3.2. Motivation

In recent years, WSN has seen widely use as distributed environ-
ments like cloud computing and edge computing have grown. One
of the most basic challenges of WSN is node coverage optimization,
which is a NP-hard problem. Traditional deterministic techniques and
algorithms cannot solve NP-hard problems in a reasonable computing
time. In this case, it is better to use non-deterministic algorithms, such
as meta-heuristic algorithms.

Some researches propose that PSO algorithm, ABC algorithm and
other meta-heuristic algorithms have been proposed to address the
WSN coverage optimization problem, which effectively optimizes the
deployment mechanism of sensor nodes. Subsequently, some scholars
proposed improved algorithms to further improve the coverage of sen-
sors in WSN. Undoubtedly, these related works have played a positive
role in the research of WSN coverage optimization. However, they all
have many similar shortcomings.

Easy to fall into local optimal solution. The goal of WSN coverage
optimization problem is to solve the optimal sensor node deployment
mechanism to maximize the coverage in WSN, which is a maximum
optimization problem. Nevertheless, coverage optimization problem is
a non-convex optimization problem. The objective function has many
maximum value, and the problem has many local optimal solutions. As
a result, it might be challenging to achieve further optimization while
tackling non-convex issues since it is possible to reach the problem’s
local optimum. It probably fall into the local optimal solution in the
optimization solution and be unable to exit, leading to poor coverage
of deployed WSN sensor nodes and numerous coverage blind spots.
Fig. 4 shows the distribution of feasible solutions of a simple non-
convex function, which has local optimal solutions. When the problem
optimization solution reaches the local optimum, whether the search
step size is too tiny or the search strategy is too aggressive, it is simple
to approach the local optimum gradually. And then fall into the local
optimal solution and it is difficult to jump out. When an algorithm is
applied to an optimization problem and reaches the local optimum,
it will experience problems including low accuracy and premature
convergence.

Inadequate in-depth analysis of WSN coverage. Many improved
algorithms to resolve the WSN coverage optimization problem, and
they may certainly have an optimization consequence. However, this
is only to verify the basis for its improved algorithms to solve prac-
tical problems. And these algorithms have no unique performance
advantages in solving WSN coverage problems. In these related works,
their main improvement perspective is to achieve better overall op-
timization performance on some standard test function sets, rather
than specifically improving WSN coverage optimization. Therefore, it
5

is difficult to design an optimization algorithm that conforms to the
optimization problem without in-depth study and discussion of WSN
coverage optimization problem and analysis of the characteristics of
the optimization problem.

4. Our proposed SaMABC algorithm

In this section, we propose SaMABC, a self-adaptive multi-strategy
artificial bee colony algorithm. The key to the design of SaMABC
algorithm is to select an appropriate search strategy for WSN coverage
optimization and build a strategies pool. At the same time, according
to the principle of the working mechanism of ABC algorithm, the
corresponding strategy selection mechanism is designed for different
phases. In addition, WSN coverage optimization often has some short-
comings, such as easily falling into local optimal solution. As a result,
we integrate a few pertinent optimization strategies to improve the
algorithm’s capacity to depart from the local optimum. The SaMABC
algorithm’s framework flow chart for solving optimization issues is
shown in Fig. 5.

4.1. Multi-strategy pool

Each optimization problem includes different characteristics, such
as unimodality and multimodality. Single-mode problems demand a
strong local search capability, whereas multimodal functions call for
both strong global and local search capabilities. Algorithms are of-
ten created with a balance between both local and global search
capabilities, which correlate to the capacity for exploration and ex-
ploitation [35]. If the algorithm is optimized by a single strategy,
it is challenging to have a strong exploration and exploitation ca-
pacity. However, multi-strategy mechanisms can use search strategies
with various search capabilities. Through the complementarity of tech-
niques, it establishes a balance between the algorithm’s exploration and
exploitation capabilities, enhancing algorithm performance.

When investigating the WSN coverage optimization problem, we
find that it is a multimodal problem with many local optimal solutions.
When these improved algorithms are optimized to the middle and late
phase, there will be problems such as search stagnation and failure to
further optimize the problem. The method has started to progressively
converge in the middle and late phases of iteration, and it is challenging
to leave the local optimum region. Therefore, this paper gives greater
consideration to the search strategy that has higher global search
capacity, when it designs which search strategy to pick to establish a
multi-strategy pool.

The employed bee phase and the onlooker bee phase of the original
ABC method update the solution using the same solution search Eq. (9).
Where 𝑋𝑘 is a random individual in the population, and 𝑋𝑘 ≠ 𝑋𝑖.
Receive random individual 𝑋𝑘, the search direction of the algorithm
has a strong randomness, leading to the algorithm has good explo-
ration capabilities but poor exploitation flaws. In view of the strong
exploration ability of random individuals in the search process, two
random individuals 𝑋𝑘 and 𝑋𝑡 are introduced in Eqs. (10) and (11) at
the same time. They broaden the diversity of individual learning and
significantly improve the algorithm’s capacity for global search [36].

𝑉𝑖 = 𝑋𝑖 + 𝜙𝑖,𝑗 ⋅ (𝑋𝑖 −𝑋𝑘) (9)

𝑉𝑖 = 𝑋𝑖 + 𝜙𝑖,𝑗 ⋅ (𝑋𝑡 −𝑋𝑘) (10)

𝑉𝑖 = 𝑋𝑘 + 𝜙𝑖,𝑗 ⋅ (𝑋𝑡 −𝑋𝑘) (11)

The above three solution search equations all have a wider search
range by adding random individuals, so the algorithm has a very strong
exploration capability. However, if the solution search strategy of the
algorithm is biased towards exploration, it will lead to repeated cross
jumps in the solution space, and it is difficult to find high-quality feasi-
ble solutions. Therefore, if the algorithm only has strong exploration
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Fig. 5. Optimization frame diagram.
ability, but lacks the ability in exploitation, it is still challenging to
obtain the optimal solution of the problem in multimodal functions.

The present optimal solution and elite solution are suggested to
be used in many connected works in order to expand the exploita-
tion capacity and improve the solution search equation. GBABC [24]
proposes an improved Gaussian bare bones ABC algorithm. It uses
Gaussian distribution to make use of the current optimal solution 𝑋𝑏𝑒𝑠𝑡,
and update the solution in the search area formed by 𝑋𝑏𝑒𝑠𝑡 and the
current solution. The solution search equation effectively uses 𝑋𝑏𝑒𝑠𝑡,
the algorithm can further search in the better region, and has good
local search ability. The solution search equation proposed by GBABC
is shown in Eq. (12).

𝑉𝑖 = 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(
𝑋𝑖 +𝑋𝑏𝑒𝑠𝑡

2
, |𝑋𝑖 −𝑋𝑏𝑒𝑠𝑡|) (12)

where, 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜁1, |𝜁2|) is Gaussian distribution function, 𝜁1 is the area
center of Gaussian distribution, 𝜁2 is the disturbance range.

We choose four alternative solution search equations to establish a
multi-strategy pool in order to balance the algorithm’s exploration and
exploitation capacities, improve the search performance as a whole,
and speed up the algorithm’s convergence speed. In this multi-strategy
pool, we select Eqs. (9), (10) and (11) solution search strategies with
strong exploration capability and Eq. (12), which is more inclined to
exploitation. In addition, we also designed the dynamic disturbance
step parameter 𝑘 to replace the original 𝜙𝑖,𝑗 . The multi-strategy pool
built in this paper is as follows:

𝑉𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑋𝑖 + 𝑘 ⋅ (𝑋𝑖 −𝑋𝑘)
𝑋𝑖 + 𝑘 ⋅ (𝑋𝑡 −𝑋𝑘)
𝑋𝑘 + 𝑘 ⋅ (𝑋𝑡 −𝑋𝑘)
𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑋𝑖+𝑋𝑏𝑒𝑠𝑡

2 , |𝑋𝑖 −𝑋𝑏𝑒𝑠𝑡|)

(13)

where, 𝑘 is a variable coefficient that changes with the algorithm
iteration, and 𝑘 ∈ [−1.5, 1.5], which will be described in detail in
Section 4.3. And others follow the original literature.

4.2. Selection mechanism

In order to further balance the ABC algorithm’s capabilities for
exploration and exploitation, this paper proposes a variety of selection
processes for the employed bee phase and onlooker bee phase in
conjunction with its intrinsic mechanisms. To logically utilize the multi-
strategy method and maximize the WSN coverage problem, this is
done.

4.2.1. Random selection mechanism of employed bee phase
At employed bee phase, their main responsibility is to explore

new nectar sources in the whole search space, and they should have
better global search capabilities. For this reason, we designed a random
6

selection method for this phase to use the above four solution search
equations, that is, each employed bee randomly selects one solution
search equation from the multi-strategy pool (13) and generate a new
nectar source. This method can prevent the employed bees from over
guiding a certain search strategy, balance the guiding role of many
strategic mechanisms, and thus maintain the overall search ability of
the employed bees.

4.2.2. Greedy selection mechanism of onlooker bee phase
At onlooker bee phase, the onlooker bees are mainly responsible

for further exploit new nectar sources near better nectar sources, and
should have better local search ability. Therefore, unlike the employed
bee phase, the random selection method is no longer suitable for
onlooker bees.We develop a greedy selection strategy for it, whereby
onlooker bees are only permitted to apply the solution search equation
that performs the best during the employed bee phase. To measure
the optimization effect of search equations with various solutions, we
utilize the index of fitness improvement, as given in Eq. (14):

𝛥𝑖 =

{

𝑓𝑖𝑡(𝑉𝑖) − 𝑓𝑖𝑡(𝑋𝑖), 𝑓 𝑖𝑡(𝑉𝑖) > 𝑓𝑖𝑡(𝑋𝑖)
0, 𝑓 𝑖𝑡(𝑉𝑖) ≤ 𝑓𝑖𝑡(𝑋𝑖)

(14)

where, 𝛥𝑖 represents the fitness improvement amount associated with
the 𝑖th nectar source at employed bee phase, which is the particular
optimization result of the associated solution search equation. The
individual optimization impacts of each of the four solutions to the
search equation can be determined, allowing the optimal solution to
be chosen for the onlooker bee phase. This is done by adding up the
fitness improvements amount of all nectar sources at employed bee
phase. The greedy selection mechanism aids in maintaining a stronger
local search capability throughout onlooker bee phase. It is worth noted
that when the fitness improvement of all nectar sources is 0, none of the
four options may make optimization effects. At this point, the onlooker
bee will randomly select a solution search equation from multi-strategy
pool and update the feasible solution.

4.3. Enhance the ability to jump from local optimum

Additionally, we propose using the concept of simulated annealing
to aid the algorithm escape the local optimum in order to address the
WSN coverage problem, which is simple to enter the local optimum. At
the same time, variable search step size and dynamic threshold 𝑙𝑖𝑚𝑖𝑡 are
also established to improve the search performance of the algorithm.

The simulated annealing algorithm’s basic idea is to randomly
search for the objective function’s global optimal solution in the so-
lution space from a better position, paired with the probability jump
properties. It will accept the viable solution that is worse than the
present solution with a specific probability when it reaches the local
optimum solution, and it may then leave the current local optimal zone.
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Because of this, the simulated annealing process efficiently prevents
slipping towards the local extreme value and eventually tends to the
global ideal position. When updating the solution at employed bees
and onlooker bees phase, we specify a certain probability 𝑝𝑚 to accept
a solution that is inferior to the existing solution. This is done using the
principle of the simulated annealing method. Parameter 𝑝𝑚 increases
with the algorithm iteration, and its calculation equation is as follows:

𝑝𝑚 = 0.1 ⋅ ( 𝐹𝐸𝑠
𝑀𝑎𝑥𝐹𝐸𝑠

) (15)

here, 𝐹𝐸𝑠 is the present fitness function’s evaluation frequency and
𝑎𝑥𝐹𝐸𝑠 is the fitness function’s evaluation frequency at its maximum.

n addition, the variable search step size 𝑘 in the multi-strategy pool
15) also changes with the iteration of the algorithm, and its calculation
quation is as follows:

= 𝜙𝑠 ⋅ (
𝐹𝐸𝑠

𝑀𝑎𝑥𝐹𝐸𝑠
) (16)

here, 𝜙𝑠 is a random number with uniform distribution of [-1.5, 1.5].
At the scout bee phase, a nectar source is deemed to have been

ined out at the scout bee phase if it has not been updated for a set
mount of time 𝑙𝑖𝑚𝑖𝑡. In order to prevent the algorithm from falling
nto search stagnation, reset is selected to break this possible search
tagnation. However, it is extremely unreasonable to give up the expe-
ience of historical search without making effective use of it. In order
o solve this problem, some related work has been proposed. MABC-
S [37] proposes a general reverse learning mechanism to generate

he reverse solution of the abandoned nectar source, then selects the
est from the reverse solution and the randomly generated new nectar
ource to retain. In order to increase the likelihood of discovering the
lobal optimal solution, NABC [29] suggests a global neighborhood
earch method to carry out fine-grained search within the region of the
bandoned nectar source. The global neighborhood search mechanism
roposed by NABC is as follows:

𝑋𝑖 = 𝑟1 ⋅𝑋𝑖 + 𝑟2 ⋅𝑋𝑏𝑒𝑠𝑡 + 𝑟3 ⋅ (𝑋𝑗 −𝑋𝑘) (17)

where, 𝑟1, 𝑟2 and 𝑟3 is a random number in the interval [0, 1] and
satisfies 𝑟1 + 𝑟2 + 𝑟3 = 1. 𝑋𝑗 and 𝑋𝑘 is two random individuals in the
population, 𝑋𝑖 ≠𝑋𝑗 ≠𝑋𝑘.

We adopt such excellent global search technology (17) to ensure
population diversity, improve the algorithm’s early exploration capa-
bility, and make sensible use of previous search experience. Generally,
the preset threshold 𝑙𝑖𝑚𝑖𝑡 for triggering this mechanism are 50 [38],
00 [39], and 200 [40]. Obviously, this fixed threshold 𝑙𝑖𝑚𝑖𝑡 setting
ethod is difficult to satisfy the demands of different optimization

tates to some extent. In the early phase of iteration, the algorithm
hould have a strong global search capability, and a small 𝑙𝑖𝑚𝑖𝑡 setting
an increase the trigger frequency of the mechanism. The local search
bility of the problem should be favored in the middle and latter
tages of the iteration, and the threshold 𝑙𝑖𝑚𝑖𝑡 has to be set too high
o lower the trigger frequency of the mechanism. To this end, this
aper dynamically adjusts the parameter 𝑙𝑖𝑚𝑖𝑡 to make it increase with
teration. The setting expression of the parameter 𝑙𝑖𝑚𝑖𝑡 value is as
ollows:

𝑖𝑚𝑖𝑡 = 200 ⋅ ( 𝐹𝐸𝑠
𝑀𝑎𝑥𝐹𝐸𝑠

) (18)

It is worth noting that the lower 𝑙𝑖𝑚𝑖𝑡 cannot be less than 20. By
oing so, the algorithm’s ability to balance exploration and exploitation
ay be preserved, and its search performance can be improved.

.4. Algorithm pseudocode

To more clearly explain the optimization process of SaMABC, al-
orithm 1 provides a pseudocode description. The number of nectar
ources is 𝑆𝑁 , and the evaluation intervals of the consumed fitness
unction are 𝐹𝐸𝑠. And 𝑀𝑎𝑥𝐹𝐸𝑠 is the preset fitness function’s max-
mum evaluation period, which also serves as the algorithm’s shut-
own requirement. The best answer to the optimization problem’s final
utput is denoted by the symbol 𝑃 .
7

𝑏𝑒𝑠𝑡
Algorithm 1: SaMABC algorithm
Input: The population size 𝑆𝑁 , the Maximum evaluation times

𝑀𝑎𝑥𝐹𝐸𝑠
Output: Best solution 𝑃𝑏𝑒𝑠𝑡

1 Randomly generate 𝑆𝑁 food sources as the initial population
according to the Eq.(5);

2 Evaluate each food source and set 𝐹𝐸𝑠 = 𝑆𝑁 ;
3 while 𝐹𝐸𝑠 < 𝑀𝑎𝑥𝐹𝐸𝑠 do
4 /*Employed bee phase*/;
5 for 𝑖 = 1 to 𝑆𝑁 do
6 Generate solution 𝑉𝑖 by Randomly selecting from Eq.

(13);
7 Set 𝐹𝐸𝑠 = 𝐹𝐸𝑠 + 1;
8 if 𝑓 (𝑉𝑖) > 𝑓 (𝑋𝑖) then
9 𝑋𝑖 = 𝑉𝑖 and set 𝑡𝑟𝑖𝑎𝑙𝑖 = 0;
10 Record 𝛥𝑖 for the selected solution search equation;
11 else
12 Accept inferior solutions with a certain probability

𝑝𝑚;
13 Set 𝑡𝑟𝑖𝑎𝑙𝑖 = 𝑡𝑟𝑖𝑎𝑙𝑖 + 1;
14 end
15 end
16 /*Onlooker bee phase*/;
17 Keep the solution search equation with the best

performance in the onlooker bee phase;
18 for 𝑖 = 1 to 𝑆𝑁 do
19 Generate the new solution 𝑉𝑖 for the old solution 𝑋𝑖

based on the best performing solution search equation
in Eq.(13);

20 Set 𝐹𝐸𝑠 = 𝐹𝐸𝑠 + 1;
21 if 𝑓 (𝑉𝑖) > 𝑓 (𝑋𝑖) then
22 𝑋𝑖 = 𝑉𝑖 and set 𝑡𝑟𝑖𝑎𝑙𝑖 = 0;
23 else
24 Accept inferior solution with a certain probability

𝑝𝑚;
25 Set 𝑡𝑟𝑖𝑎𝑙𝑖 = 𝑡𝑟𝑖𝑎𝑙𝑖 + 1;
26 end
27 end
28 /*Scout bee phase*/;
29 for 𝑖 = 1 to 𝑆𝑁 do
30 if 𝑡𝑟𝑖𝑎𝑙𝑖 > 𝑙𝑖𝑚𝑖𝑡 then
31 Replace 𝑋𝑖 with the new solution 𝑇𝑋𝑖 generated by

the Eq.(17);
32 Set 𝑡𝑟𝑖𝑎𝑙𝑖=0 and 𝐹𝐸𝑠 = 𝐹𝐸𝑠 + 1;
33 end
34 end
35 end
36 return 𝑃𝑏𝑒𝑠𝑡

5. Performance evaluation and analysis

We choose five distinct WSN coverage situations for the simulation
experiment in order to test the optimization performance of the algo-
rithm SaMABC presented in this paper. The scenario parameter settings
for each scenario are listed in Table 2. Additionally, the superior per-
formance of the self-adaptive multi-strategy mechanism in SaMABC is
confirmed by the effectiveness analysis of the algorithm’s improvement
points. In the experiment, we selected seven advanced optimization
algorithms for comparative analysis with SaMABC, the descriptions of
these algorithms are shown in Table 3.

The aforementioned algorithms used in the experimental compar-
ison have excellent performance in solving optimization problems.
Moreover, they have a certain correlation with the research content
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Table 2
Parameter settings in WSN scenarios.

Parameter 40 × 40 50 × 50 100 × 100

D 30 40 50
r 4 (m) 5 (m) 10 (m)
𝑟𝑒 2.5 2.5 5
𝛼1 1 1 1
𝛼2 0 0 0
𝛽1 1 1 1
𝛽2 1.5 1.5 1.5

Table 3
Description of optimization algorithm participating in experimental comparison.

Algorithm Description

PSO [14] Particle swarm optimization algorithm based on flight
behavior of simulated birds

ABC [15] Artificial bee colony algorithm based on simulated bee
colony for intelligent nectar collection

GABC [25] An improved ABC algorithm guided by global optimal
solution

GBABC [26] An improved ABC algorithm for gaussian bare bones
ECABC [27] An improved ABC algorithm based on elite solution guidance

ABCVSS [28] An improved multi-strategy ABC algorithm with variable
search

NABC [29] An improved ABC algorithm based on best neighbor and
global neighborhood search

ABC-MNT [17] Artificial bee colony algorithm based on multiple
neighborhood topologies

Table 4
Optimized coverage of nine algorithms on 30 nodes.

Algorithm Initial Best Worst Mean Std

PSO 65.13% 76.25% 70.00% 73.45% 0.0161
ABC 65.13% 79.56% 77.56% 78.35% 0.0045
GABC 64.63% 79.44% 77.69% 78.48% 0.0044
GBABC 66.06% 80.44% 77.81% 78.93% 0.0078
ECABC 64.75% 78.50% 76.50% 77.69% 0.0052
ABCVSS 64.69% 79.31% 77.75% 78.45% 0.0044
NABC 64.88% 79.38% 76.69% 77.54% 0.0056
ABC-MNT 65.68% 81.43% 79.37% 80.50% 0.0062
SaMABC 65.06% 85.38% 84.81% 85.00% 0.0022

of this paper. In order to prevent the unpredictability of experimental
data and lessen the influence of random mistakes, all algorithms are
independently run for 30 times to take their average results.

5.1. WSN coverage optimization in 40 m × 40 m scenario

In this experiment, the monitoring area is in a 40 m × 40 m square
area. There are 30 sensors in all, and each one has a 4 m sensing radius
𝑟. Initially, 30 nodes are distributed at random in the detection region,
and then the optimal deployment location of each sensor is solved
using SaMABC and seven comparison algorithms. Table 4 displays
the coverage optimization outcomes for the nine algorithms after 30
separate runs, with the ideal results shown in bold. As can be seen
from Table 4, the initial coverage of the nine algorithms is basically the
same, about 65%. However, the SaMABC finally achieves the maximum
average coverage, increasing the average coverage from 65.06% to
85.25%. The coverage of the two original algorithms reached 77.31%
and 78.37% respectively. The five revised ABC algorithms have nearly
identical end coverage. The final coverage optimization of SaMABC is
5.3% higher than the best performance GBABC in the improved ABC
algorithm, which shows that SaMABC has excellent performance in
8

solving WSN coverage problems. At the same time, among the coverage
Fig. 6. Convergence curve of covering optimization of different algorithms on 30
nodes.

optimization results of the eight optimization algorithms, no matter the
best result, worst result and variance, SaMABC is all the best.

In order to further examine the performance variances of various
algorithms, this paper also provides the convergence curve of the
different algorithms shown in Fig. 6. It can be seen that SaMABC has
achieved very high coverage in the early phase, and the convergence
speed is also the fastest among all algorithms. Compared with GBABC,
SaMABC displays a significantly improvement in coverage over time,
demonstrating the algorithm’s strong capacity to depart from local
optimums. At the same time, ABCVSS is also an adaptive multi-strategy
improvement algorithm. However, SaMABC, which effectively demon-
strates the efficacy of the improvement points suggested in this paper,
has a far better optimization impact than it does.

5.2. WSN coverage optimization in 50 m × 50 m scenario

In this experiment, the monitoring area is in a 50 m × 50 m square
area. There are 40 sensors in all, and each one has a 5 m sensing radius
𝑟. Initially, 40 nodes are distributed at random in the detection region,
and then the optimal deployment location of each sensor is solved
using SaMABC and seven comparison algorithms. Table 5 displays
the coverage optimization outcomes of the nine algorithms after 30
separate runs, with the best results highlighted in bold. As can be seen
from Table 5, the initial coverage of the nine algorithms is basically the
same, about 75%. Similarly, SaMABC finally achieved the maximum
average coverage, increasing the average coverage from 74.64% to
95.46%, and the coverage of the monitoring area increased by 20.82%.
At the same time, compared with the GBABC with the best optimization
effect in the comparison algorithm, the coverage of SaMABC is 5.24%
higher than that of the original ABC. At the same time, based on
the variation of 30 runs in the experimental data, the optimization
performance of SaMABC is quite consistent.

We also provide the convergence curve of the algorithm depicted
in Fig. 7 to further examine the performance variances of various
algorithms. It can be seen that the SaMABC algorithm has achieved very
high coverage in the early phase, and the convergence speed is also the
fastest among all algorithms. Similar improvements in coverage are also
shown in the middle and late phases of SaMABC, further demonstrating
the algorithm’s potent capacity to break out of local optimization.
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Fig. 7. Convergence curve of covering optimization of different algorithms on 40
nodes.

Fig. 8. Convergence curve of covering optimization of different algorithms on 50
nodes.

Table 5
Optimized coverage of nine algorithms on 40 nodes.

Algorithm Initial Best Worst Mean Std

PSO 74.92% 86.92% 81.72% 84.52% 0.0131
ABC 74.96% 90.20% 88.60% 88.20% 0.0034
GABC 75.44% 90.12% 88.56% 89.25% 0.0043
GBABC 75.24% 90.64% 88.20% 89.27% 0.0057
ECABC 75.16% 89.40% 87.80% 88.64% 0.0043
ABCVSS 75.24% 89.72% 88.40% 89.11% 0.0033
NABC 75.04% 89.80% 87.40% 88.60% 0.0055
ABC-MNT 74.96% 91.72% 89.00% 90.49% 0.0064
SaMABC 74.64% 95.48% 94.52% 94.98% 0.0027

5.3. WSN coverage optimization in 100 m × 100 m scenario

In this experiment, the monitoring area is in a 100 m × 100 m
square area. There are 50 sensors in all, and each one has a 10 m
sensing radius 𝑟. As shown in Table 6, the initial coverage of the nine
9

p

Table 6
Optimized coverage of nine algorithms on 50 nodes.

Algorithm Initial Best Worst Mean Std

PSO 85.37% 94.69% 91.63% 93.39% 0.0075
ABC 85.30% 97.31% 96.62% 96.96% 0.0019
GABC 85.34% 97.33% 96.66% 96.89% 0.0015
GBABC 85.23% 97.44% 96.51% 96.97% 0.0023
ECABC 85.17% 97.06% 96.24% 96.58% 0.0020
ABCVSS 85.33% 97.21% 96.64% 96.91% 0.0017
NABC 85.34% 97.11% 96.41% 96.65% 0.0016
ABC-MNT 85.38% 97.72% 95.67% 97.06% 0.0050
SaMABC 85.42% 99.05% 98.90% 98.96% 0.0005

Table 7
Parameter settings in two larger WSN scenarios.

Parameter 250 × 250 500 × 500

D 60 70
r 25 (m) 50 (m)
𝑟𝑒 10 20
𝛼1 1 1
𝛼2 0 0
𝛽1 1 1
𝛽2 1.5 1.5

algorithms is basically the same, about 85%. The results indicate that
SaMABC finally reaches the maximum average coverage rate, raising
the average coverage rate from the original 85% to 99.05%, and that
the coverage rate of the monitoring area grew by 14.05%.

To further compare the performance differences of different algo-
rithms, the convergence curve of the algorithm shown in Fig. 8 is also
given. It can be seen that the coverage optimization of the algorithm
SaMABC has reached 99% in 50 000 evaluations, with the highest
solution accuracy and the fastest convergence speed. In addition, Fig. 8
also displays the original sensor nodes deployment locations as well as
the final deployment diagrams following the optimization of various
algorithms. As can be seen from the deployment diagram in Fig. 9,
SaMABC has more uniform node deployment and a greater detection
coverage area than other comparative algorithms. Although the SaM-
ABC has a small uncovered area, in fact, the nearby sensor nodes
can perceive the area, showing the optimal deployment scheme for
coverage. The results of three scenarios demonstrate that SaMABC is
very competitive in WSN coverage and has excellent performance.

5.4. WSN coverage optimization in two larger scenarios

We simulated and analyzed the performance of the proposed al-
gorithm SaMABC in three classic WSN scenarios in the preceding
section, which effectively showed that SaMABC has excellent optimiza-
tion performance in coverage optimization. We implemented extended
simulation experiments in two large WSN scenarios, 250 m × 250 m
nd 500 m × 500 m, respectively, to demonstrate that SaMABC can also
dapt to more complex WSN scenarios. Table 7 shows the parameter
ettings for two large sceneries, similarly as Table 2. Tables 7 and 8
isplay the coverage optimization results of nine algorithms after 30
uns in the 250 m × 250 m and 500 m × 500 m scenarios, respectively,
ith the optimal results highlighted in bold.

Tables 8 and 9 show that the initial coverage of the nine algorithms
s roughly the same, at about 85.5% and 90.1%, respectively. SaM-
BC finally achieved maximum average coverage, improving average
overage from 85.76% to 99.80% and 90.12% to 99.80%. Overall, it
emonstrates that SaMABC continues to overperform in solving large
SN coverage issues. In addition, SaMABC outperforms the other

ight optimization algorithms in terms of coverage optimization results,
egardless of the best, worst, or variance.

Figs. 10 and 11 demonstrate the convergence curves optimized
y different algorithms in two large scenarios to further explore the

erformance differences of various algorithms. It is worth noting that
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Fig. 9. Sensor node deployment diagram of 50 nodes optimized by different algorithms.
Fig. 10. Convergence curve of covering optimization of different algorithms on 60
nodes.

in the WSN coverage optimization problem, the number of sensors D
corresponds to the dimension of the optimization problem. As a conse-
quence, in these two large-scale WSN scenarios, coverage optimization
has become a high-dimensional optimization problem, making the
optimization algorithm extremely difficult to solve. However, as shown
in Figs. 10 and 11, SaMABC may still reach very high coverage in the
early stages, and its convergence rate is the fastest of all algorithms. In
summary, even as the problem dimension grows, SaMABC can maintain
excellent optimization performance, high solution accuracy, and quick
convergence rate.

5.5. Algorithm verification

In order to validate the efficacy of SaMABC, the section conducts
ablation experiments on the multi-strategy mechanism of SaMABC
under the scenario of 40 sensor nodes. Four comparison algorithms are
designed using four solution search equations of the multi-strategy pool
(13), which are ABC-1, ABC-2, ABC-3 and ABC-4. The experimental
results for SaMABC and the four comparator algorithms are displayed
in Table 5. Additionally, the bolded results are the best ones.
10
Fig. 11. Convergence curve of covering optimization of different algorithms on 70
nodes.

Table 8
Optimized coverage of nine algorithms on 60 nodes.

Algorithm Initial Best Worst Mean Std

PSO 85.44% 95.64% 90.52% 93.08% 0.0149
ABC 85.68% 97.44% 96.60% 97.06% 0.0028
GABC 85.64% 97.80% 96.84% 97.27% 0.0035
GBABC 85.96% 97.32% 96.60% 96.85% 0.0025
ECABC 85.80% 96.72% 96.32% 96.58% 0.0012
ABCVSS 85.64% 97.32% 96.76% 97.12% 0.0180
NABC 85.52% 96.84% 95.84% 96.44% 0.0035
ABC-MNT 85.52% 97.88% 96.76% 97.46% 0.0035
SaMABC 85.76% 99.80% 99.56% 99.71% 0.0006

From the experimental results in Table 10, four separate search
strategy algorithms have the same performance in solving the WSN
coverage problem, and the final coverage optimization results are about
89%. In order to better demonstrate the importance of various search
strategies in the optimization process, we provide the number of suc-
cessful improvements and the proportion of successful improvements of
each search strategy in resolving the WSN coverage problem. Fig. 12
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Table 9
Optimized coverage of nine algorithms on 70 nodes.

Algorithm Initial Best Worst Mean Std

PSO 90.04% 96.52% 94.44% 95.20% 0.0059
ABC 90.56% 98.44% 97.72% 98.09% 0.0024
GABC 90.16% 98.68% 97.88% 98.18% 0.0022
GBABC 90.20% 98.72% 97.76% 98.20% 0.0031
ECABC 90.16% 98.36% 97.56% 97.94% 0.0022
ABCVSS 90.12% 98.64% 97.96% 98.19% 0.0018
NABC 90.08% 97.80% 96.92% 97.37% 0.0026
ABC-MNT 90.08% 98.68% 90.92 96.62% 0.0301
SaMABC 90.12% 99.80% 99.72% 99.75% 0.0002

Table 10
Optimization comparison of five algorithms on WSN coverage.

Algorithm Initial Best Worst Mean Std

ABC-1 75.00% 89.84% 88.60% 89.13% 0.0037
ABC-2 74.76% 90.08% 88.56% 89.23% 0.0043
ABC-3 74.96% 89.60% 88.44% 89.04% 0.0028
ABC-4 75.00% 90.08% 88.56% 89.41% 0.0034
SaMABC 74.64% 95.48% 94.52% 94.98% 0.0027

displays the contribution points for the four search techniques. The im-
provement times of the four search algorithms account for around 25%,
with minimal variation, as shown in Fig. 12(a). The search strategy
Eq. (2) makes twice as big of a contribution to issue optimization as
the other three search strategies, as shown in Fig. 12(b). We find that
the optimization effect of Eq. (2) is not as good as that of Eq. (1) in
a single strategy, but Eq. (2) shows excellent performance in a multi-
strategy mechanism. This is mostly due to the adaptive multi-strategy
mechanism presented in this research, which enhances algorithmic
performance by balancing the advantages and disadvantages of each
search strategy.

Fig. 13 illustrates the SaMABC algorithm, which shows the best op-
timization performance and the fastest convergence speed. The search
strategies of ABC-1, ABC-2, and ABC-3 all have strong global search
capabilities, but the final node deployment coverage is less than 90%.
This is because they are still trapped in the local optimization of
the WSN coverage problem and cannot get out of the way to get a
better deployment scheme. Similarly, although ABC-4 has strong local
search capability, its coverage optimization effect is also poor. SaMABC
complements the benefits and drawbacks of the four search techniques
to combine their good performance and provide effective optimiza-
tion performance. In general, SaMABC shows excellent performance in
solving WSN coverage optimization problems.

5.6. Discussion

According to the comparison results with the eight related improved
ABC, SaMABC’s performance is very competitive, not only in terms
of convergence accuracy, but also in terms of convergence speed.
Furthermore, we evaluate SaMABC’s running time, recording its real
CPU running time (in seconds) in the 50 m × 50 m scenario, and
comparing it to the eight related improved ABC outlined above. To
ensure a fair comparison, each algorithm is run 30 times independently,
with the average CPU running time being the final result. The algorithm
operating platform’s setup information is as follows: CPU: Intel (R) Core
i7-9750H, RAM: 16 GB, OS: Microsoft Windows 10 Professional, and
programming language: Java.

Table 11 displays the algorithm’s CPU running time. The second
column shows the algorithm’s overall average CPU running time for
30 times, and the last column shows the variation of the CPU running
time for 30 times. As can be seen, SaMABC has the shortest average
running time. Although ABC-MNT has the shortest completion time,
11
Table 11
Comparison result of CPU running time with relevant improved ABC algorithm (unit:
second)

Algorithm Best Worst Mean Std

PSO 239.3 270.4 252.9 10.1289
ABC 236.1 273.0 254.4 10.5257
GABC 226.7 277.9 254.6 11.2831
GBABC 225.7 278.2 254.4 11.4595
ECABC 218.4 277.4 244.2 9.2379
NABC 225.3 273.1 234.847 8.7868
ABC-MNT 182.6 276.1 225.173 31.2147
SaMABC 185.5 199.1 189.6 3.5402

Fig. 12. Contribution of search strategy in SaMABC.

the variation indicates that the ABC-MNT optimization technique is not
stable enough. SaMABC not only has the shortest average completion
time, but also the smallest variance. However, it should be noted that
when the number of evaluation times FEs of SaMABC in Fig. 8 reaches
50 000, the coverage rate has reached 99%, and its optimization value
is very near to the final optimization result of 99.05%, as shown
in the convergence diagram of algorithm optimization. We set a big
number of evaluation times to see if the algorithm may be further
optimized later on. Figs. 6 and 7 show that SaMABC can continue to
generate optimization in the middle and later stages of the iteration,
due largely to the newly designed simulated annealing strategy and
global neighborhood search mechanism in SaMABC, which effectively
helps the algorithm jump out of local optimization, resulting in a
higher quality feasible solution. SaMABC illustrates clear advantages in
convergence and solution quality, and its overall performance remains
competitive.

6. Conclusion

The problem of wireless sensor coverage is easy to slip into local
optimization and has poor coverage optimization impact. We pro-
vide SaMABC, a revolutionary self-adaptive multi-strategy artificial bee
colony method, as a solution to this issue. In this algorithm, we choose
the appropriate search strategy to build the multi-strategy pool ac-
cording to the characteristics of the wireless sensor coverage problem.
And we design different strategy selection mechanisms according to
the working principle of ABC algorithm. At the same time, SaMABC
combines the idea of simulated annealing and dynamic parameters that
vary with the degree of optimization to help the algorithm escape the
local optimization. We assess the performance of the enhanced strategy
in the experimental simulation and compare our algorithm to the
conventional PSO, ABC, and six superbly upgraded ABC methods. The
results show that the coverage of wireless sensor networks in SaMABC
achieves around 99.1% and outperforms the initial coverage by up to
14.1%. In the larger WSN scenarios, SaMABC still maintains excellent
solution accuracy and convergence speed. In future work, we will
combine other optimization techniques to improve the performance of
the algorithm.
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m

Fig. 13. Convergence curves of coverage optimization of five algorithms on 40 nodes.
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